
XAPP521 (v1.0) February 1, 2012 www.xilinx.com 1

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. AMBA and ARM are registered rademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.

Summary The ARM® core AMBA® specification (version 4.0) AXI interconnect standard includes three
Advanced eXtensible Interface version 4 (AXI4) interconnect protocols—AXI4 interconnect,
AXI4-Lite protocol, and AXI4-Stream interconnect. The Xilinx AXI video direct memory access
(AXI VDMA) core is offered with an AXI4-Stream interface for video data. Video applications
that require the video data to be buffered in memory need an AXI4-Stream interface to connect
with the AXI VDMA. Previous versions of Xilinx video IP cores used a protocol called Xilinx
streaming video interface (XSVI) for video data. Refer to Table 2 for a description and list of the
XSVI signals. This application note details bridging an XSVI interface to an AXI4-Stream
interface, enabling video designs with Xilinx video IP cores and XSVI interfaces to use the AXI
VDMA. Figure 1 illustrates the basic structure of the bridging between XSVI and AXI4-Stream.

Design
Overview

An embedded reference design, described in Table 1, is included to illustrate the functionality of
the bridges described in this application note.

XSVI and AXI4-Stream protocols are non-addressable, point-to-point interfaces with minimal
overhead, allowing throughput to be the main priority. The XSVI protocol streams images and

Application Note: Virtex-6 and Spartan-6 Devices

XAPP521 (v1.0) February 1, 2012

Bridging Xilinx Streaming Video Interface
with the AXI4-Stream Protocol
Authors: Steve Elzinga and Chris Martin

X-Ref Target - Figure 1

Figure 1: Basic XSVI to AXI4-Stream Structure

Video IP
XSVI to

AXI4-Stream
Bridge

AXI-VDMA
AXI4-Stream

to XSVI
Bridge

Video IP
XSVI AXI4-Stream AXI4-Stream XSVI

Memory

X521_01_121911

Table 1: Reference Design Specifics

Reference Design Description

Targeted Devices Spartan®-6 and Virtex®-6 FPGAs

Platform Tested ML605 board

Modules Used Avnet DVI I/O FMC card

Input Video 720p60

Output Video 720p60

Software tool used to verify reference design Xilinx ISE® 13.3 software

http://www.xilinx.com

XSVI to AXI4-Stream

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 2

video along with a minimal set of control signals from one video peripheral to another. The
AXI4-Stream protocol streams non-specific data to and from peripherals.

Many video systems need to buffer the data in external memory. The VDMA core provides
video cores with direct access to memory for buffering.

The latest version of the VDMA core
(http://www.xilinx.com/support/documentation/ipaudiovideoimageprocess_processing_axi-vd
ma.htm) comes with AXI4-Lite and AXI4-Stream interfaces. Some Xilinx Video IP cores use an
XSVI interface for video data. If the video processing cores with XSVI need to buffer the images
or video, then a bridge is required to bridge between XSVI and AXI4-Stream to send video data
to the AXI VDMA.

XSVI to
AXI4-Stream

To convert from the XSVI Interface to the AXI4-Stream interface requires the XSVI timing
control signals to be translated into native AXI4-Stream control signals. A FIFO is used to buffer
the data to simplify the translation from the XSVI protocol to the AXI4-Stream protocol. The
XSVI interface consists of the signals listed in Table 2.

AXI4 and AXI4-Lite protocols are typically used in a processor system, whereas the
AXI4-Stream interface is a non-addressable point-to-point connection. Detailed discussion on
the AXI4-Stream protocol is beyond the scope of this application note. More information about
AXI4 can be found in the AXI4 Reference Guide [Ref 1]. The AXI4-Stream signals of interest
are shown in Table 3.

The conversion from XSVI to AXI4-Stream is illustrated in Figure 2.

Table 2: XSVI Signals

Signal Description

active_chroma Valid chroma samples in the case of chroma sub-sampling

active_video Data on the video_data signal is valid

field_id For interlaced video: 0 = Even, 1 = Odd

hblank Horizontal blanking interval

hsync Horizontal synchronization

vblank Vertical blanking interval

video_clk Pixel clock

video_data The video stream

vsync Vertical synchronization

Table 3: AXI4-Stream Signal Subset

Signal Description

aresetn Global reset, active-low input

tdata Data passed across the interface

tlast Indicates the last data word of a packet or frame

tready Slave is ready to accept data

tvalid Master is ready to transmit data

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ipaudiovideoimageprocess_processing_axi-vdma.htm
http://www.xilinx.com/support/documentation/ipaudiovideoimageprocess_processing_axi-vdma.htm

XSVI to AXI4-Stream

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 3

Because the AXI VDMA core does not have an XSVI interface, the bridge is used. The only
XSVI-specific signals used by the AXI VDMA are the frame synchronization and active video
signals.

In compliance with the AXI4-Stream specification and to successfully bridge the data between
XSVI and AXI4-Stream, the data coming from the bridge (master side of the AXI4-Stream) has
to be stable when m_axis_tvalid is asserted. The receiving (slave) peripheral asserts the
m_axis_tready signal, telling the bridge to start sending the data that is stored in the FIFO.
Figure 3 is a representation of this transaction. Figure 3 shows the m_axis_tdata values are
stable before m_axis_tready is asserted, followed by m_axis_tvalid, which is in compliance with
the AXI4-Stream specification.

X-Ref Target - Figure 2

Figure 2: XSVI to AXI4-Stream Bridge

FIFO

RST

DIN
WREN
RDEN
WRCLK
RDCLK

D DOUT

EMPTY

Q

D

R

R

Q

D

CE

Q

D

CE

Q

R

SD Q

D Q D Q

m_axis_tdata

m_axis_tlast

video_data

video_clk

active_video

m_axis_aresetn

fsync_in

m_axis_tready

fsync_out

m_axis_tvalid

X521_02_122011

323232 3333

http://www.xilinx.com

Configuring the Bridges

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 4

AXI4-Stream to XSVI

The process to convert from an AXI4-Stream to XSVI is similar to the process to convert from
XSVI to AXI4-Stream. As shown in Figure 4, a FIFO buffers video data before streaming the
data out to be processed. As timing synchronization signals are not passed through the
AXI4-Stream interface, the video timing controller core generates the synchronization signals
needed for the video data. The axi2xsvi bridge allows both XSVI and AXI4-Stream signals as
inputs to accommodate the needed synchronization signals. The video clock and the
AXI4-Stream run at the same rate to produce a continuous video stream.

Configuring the
Bridges

The xsvi2axi bridge pcore parameters are listed in Table 4.

X-Ref Target - Figure 3

Figure 3: m_axis_tvalid Asserted Before m_axis_tready

X-Ref Target - Figure 4

Figure 4: AXI4-Stream to XSVI Bridge

video_clk

video_data

active_video

m_axis_tdata

m_axis_tvalid

m_axis_tready

P0.0 P0.1 P0.22 P0.23 P0.24

P0.0P0.0 P0.1

X521_03_111711

FIFO

RST

DIN
WREN
RDEN
WRCLK
RDCLK

active_chroma_out
field_id_out
hblank_out
hsync_out
vblank_out
vsync_out
active_video_out

active_chroma_in
field_id_in
hblank_in
hsync_in
vblank_in
vsync_in

s_axis_tdata
s_axis_tvalid

active_video_in
video_clk_in

s_axis_aresetn

video_data_out
s_axis_tready

DOUT
FULL

D

R

Q

X521_04_111711

77

Table 4: Parameters for xsvi2axi Bridge

Parameter Values Description

C_M_AXIS_S2MM_TDATA_WIDTH 8, 16 (default), 24, 32, 40 Data width on the AXI4-Stream side of the bridge

C_MEMORY_TYPE Block (default), distributed Either Block RAM or LUT RAM (distributed)

C_VIDEO_DATA 8, 10, 12,16, 24 (default), 30, 36 Data width on the XSVI side of the bridge.
Must be ≤ C_M_AXIS_S2MM_TDATA_WIDTH

C_WRITE_FIFO_DEPTH N2 (1,024 default) Memory depth of the FIFO

http://www.xilinx.com

Bridge Device Utilization and Performance

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 5

The axi2xsvi pcore parameters are listed in Table 5.

Bridge Device
Utilization and
Performance

Table 6 details the worst case utilization and performance numbers of the xsvi2axi bridge
targeting a data width of 40 in the slowest speed grade parts. For comparison to the results
listed in Table 6, Table 7 lists the required pixel clock speeds for various resolutions.

Reference
Design

The reference design is delivered as a MicroBlaze™ embedded processor design running on
an ML605 board, which highlights some basic features of the Scaler core. The bridges are
delivered as embedded pcores and reside in the EDK project directory's pcore folder. The
video system targets a 720p60 DVI connection, and requires a 74.25 MHz clock rate. The
processor system is AXI-based running at 200 MHz.

The reference design files can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=181114

Table 8 lists the memory addresses of the peripherals used in the embedded system.

Table 5: Parameters for axi2xsvi Bridge

Parameter Values Description

C_READ_FIFO_DEPTH N2 (default 4) Memory depth of the FIFO

C_S_AXIS_DATA_WIDTH 8, 16 (default), 24, 32, 40 Data width on the AXI4-Stream side of the bridge

C_VIDEO_DATA 8, 10, 12,16, 24 (default), 30, 36 Data width on the XSVI side of the bridge.
Must be ≤ C_S_AXIS_DATA_WIDTH

Table 6: Bridge Performance Numbers

Device Memory Type LUT / FF Pairs Block RAM Speed

Spartan-6 FPGA Distributed 1635 0 127 MHz

Spartan-6 FPGA Block RAM 110 2 RAMB16
1 RAMB8

237 MHz

Virtex-6 FPGA Distributed 1635 0 180 MHz

Virtex-6 FPGA Block RAM 110 1 RAMB36
1 RAMB18

233 MHz

Table 7: Resolutions and Pixel Clock

Resolution Pixel Clock

720p60 74.25 MHz

1080p/60 148.5 MHz

Max DVI Specification 165 MHz

Table 8: Memory Map of Embedded System

Instance Peripheral Base Address High Address

microblaze_0_d_bram_ctrl lmb_v10 0x00000000 0x0000FFFF

microblaze_0_i_bram_ctrl lmb_v10 0x00000000 0x0000FFFF

RS232_Uart_1 axi_uartlite 0x40600000 0x4060FFFF

axi_iic_1 axi_iic 0x40800000 0x4080FFFF

axi_iic_0 axi_iic 0x40820000 0x4082FFFF

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=181114

Reference Design

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 6

The video cores that are not addressable by the processor are listed in Table 9.

The cores listed in Table 9 are non-addressable cores, and they are also custom cores. The two
FMC cores are made by Avnet to interface with the FMC card. The xsvi2axi and axi2xsvi
bridges are the bridges highlighted in this application note.

All of the custom cores along with the Scaler core are delivered as local pcores residing in the
EDK project pcore directory. The Scaler core was generated through the CORE Generator™
GUI as a pcore with a hardware evaluation license.

Figure 5 shows only the connection between the peripherals and the processor (control path)
which allows the processor to control the video IP via software. The software control can
change settings in the video IP cores while the video stream is being processed.

microblaze_0_intc axi_intc 0x41200000 0x4120FFFF

debug_module mdm 0x74800000 0x7480FFFF

axi_scaler_0 axi_scaler 0x7C800000 0x7C80FFFF

axi_vdma_1 axi_vdma 0x7E200000 0x7E20FFFF

axi_vdma_0 axi_vdma 0x7E220000 0x7E22FFFF

axi_vtc_1 axi_vtc 0x7EE00000 0x7EE0FFFF

axi_vtc_0 axi_vtc 0x7EE20000 0x7EE2FFFF

DDR3_SDRAM axi_v6_ddrx 0xC0000000 0xCFFFFFFF

Table 9: Non-addressable Cores in Embedded System

Instance Peripheral

csc_rgb_to_ycrcb422_0 csc_rgb_to_ycrcb422

csc_ycrcb422_to_rgb_0 csc_ycrcb422_to_rgb

fmc_dvidp_dvi_out_0 fmc_dvidp_dvi_out

fmc_dvidp_dvi_in_0 fmc_dvidp_dvi_in

xsvi2axi_0 xsvi2axi

axi2xsvi_0 axi2xsvi

Table 8: Memory Map of Embedded System (Cont’d)

Instance Peripheral Base Address High Address

http://www.xilinx.com

Reference Design

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 7

Figure 6 shows the same embedded design, with the streaming interface (data path)
connections. Table 10 describes the labels in Figure 6. Some of the peripherals only process
video data on the streaming interface and have no connection to the processor. The video
stream is completely independent of the processor and the only interaction between the
processor and the video cores is through the processor bus.

X-Ref Target - Figure 5

Figure 5: Sample Video AXI4 Based Embedded Design (Control Path)

MicroBlaze
Processor

IIC_0 IIC_1

INTC VTC_0 VTC_1 Scaler UART
Lite

VDMA_0 VDMA_1 DDR

MDM Block
RAM

Cache

MDM LMB

AXI4

AXI4–Lite

X521_05_121111

X-Ref Target - Figure 6

Figure 6: Embedded Video Design Streaming Connection (Data Path)

DVI
In

DVI
Out

Scaler VDMA_1 axi2xsvi
VTC_1

CSC_1

VTC_0

CSC_0
xsvi2axi VDMA_0

Video Data

Video
Data

XSVI XSVI

XSVI

XSVI

XSVI

AXI4-Stream

AXI4-Stream
AXI4-Stream

Frame Sync Frame
Sync

X521_06_121911

XSVI

Table 10: Label Descriptions in Figure 6

Label Description

axi2xsvi AXI4-Stream to XSVI bridge

CSC Color space converter:
Instance 0 converts from RGB to YCrCb 422.
Instance 1 reverses the conversion.

DVI Out Digital visual interface output: Processed digital video streaming to a monitor.

VTC Video timing controller: Video processing core that can detect and generate timing
signals for use by the rest of the cores

xsvi2axi XSVI to AXI4-Stream bridge

http://www.xilinx.com

Running the Reference Design

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 8

Running the
Reference
Design

To run the reference design:

1. Plug the Avnet FMC card in to the ML605 board as shown Figure 7.

2. Follow the ML605 Hardware Setup Guide [Ref 2].

3. Connect a 720p60 video source to the FMC DVI input connection.

4. Connect a DVI monitor to the video output of the FMC DVI card.

5. Open a terminal to communicate with the ML605 board.

6. Unzip the reference design.

7. Open an ISE Design Suite Command Prompt.

8. Change directories into the ready_for_download directory in the unzipped reference
design project directory.

9. Launch XMD at the command prompt.

10. Run these XMD commands:

XMD% fpga -f download.bit
XMD% connect mb mdm
XMD% dow demo.elf
XMD% run

X-Ref Target - Figure 7

Figure 7: ML605 Board with Avnet FMC Card

X521_07_111711

http://www.xilinx.com

Running the Reference Design

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 9

The following information runs and outputs to a terminal.

FMC Module Validation
Board Information:
 Manufacturer = Avnet
 Product Name = FMC-DVI/DP
 Serial Number = JBT261019918
 Part Number = AES-FMCDVI-G
SUCCESS : Detected FMC-DVI/DP module!
Reset and Initialize the FMC devices ...
Detect TFP403 ...
Detected DVI input ...
Waiting for detector lock......Done.
HTotal = 1649
HActiveStart = 260
HFrontPorchStart 1540
HBackPorchStart 40
HSyncStart 0
V0FrontPorchStart 745
V0Total 749
V0BackPorchStart 5
V0SyncStart 0
V0ChromaStart 0
V0ActiveStart 25
Detected Video Dimensions = 1280 x 720
Detected Video Resolution = 720P
resolution = 4
frame_width = 1280;
frame_height = 720.
frame_width_out = 1280;, frame_height_out = 720.
osd_stride = 1280
osd_frame_width = 1280
osd_frame_height = 720

Hitting the space bar on the keyboard cycles through the various scaling features listed.

--
-- Video Scaler Test Menu using Scaler/VDMA/TimeBase drivers --
--

 Select scaling option

 Use Spacebar to rotate between the following conversions:
 From 1280Hx720V to 1280Hx720V
 From 1066Hx720V to 1280Hx720V
 From 1064Hx600V to 1280Hx720V
 From 852Hx540V to 1280Hx720V
 From 512Hx288V to 1280Hx720V
 From 256Hx144V to 1280Hx720V
 . = Rotate between coefficient sets (forwards).
 , = Rotate between coefficient sets (backwards).
 / = Reload all 16 sets of coefficients.
 r = Register printout
 R = Reset scaler

 ? = help
--
scaler_out_width = 1280
scaler_in_width = 1280
scaler_out_height = 720
scaler_in_height = 720
>

http://www.xilinx.com

Running the Reference Design

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 10

Rebuilding the Design

To rebuild the hardware portion of the reference design:

1. Unzip the reference design into a working directory.

2. Launch XPS and select the EDK project contained in the zip file.

3. In XPS, select Device Configuration > Update Bitstream.

The third option causes XPS to go through the entire implementation process to provide a
downloadable bitstream.

After the entire implementation process is completed, the software portion of the reference
design can be rebuilt using this procedure:

1. Select Project > Export Hardware Design to SDK.

2. Select Export & Launch SDK.

3. Add the repository necessary for this application note:

• In SDK, select Xilinx Tools > Repository.

• Expand Xilinx SDK.

• Highlight Repositories.

• In the Local Repositories window, select the New button.

• Browse to <project_directory>\Repository and select Okay.

4. Create a new Xilinx C Project and Board Support Package:

• Select File > New > Xilinx C Project.

• Select Empty Application.

• Keep all defaults and finish the new project creation wizard.

5. Add the custom software services and verify correct drivers:

• Xilinx Tools > Board Support Package Settings.

• Select empty_application_bsp_0 if asked.

• Highlight Overview on the left side of the window.

• Select fmc_dvip_sw, fmc_iic_sw, fmc_ipmi_sw.

• Highlight drivers on the left side of the window.

• Verify that the axi_vtc and the axi_scaler have their drivers.

6. Add the software application to the project:

• In SDK, expand the empty_application_0 project.

• Right-click on the src directory.

• Select Import.

• Expand General.

• Select Archive File and press Next.

• Browse into the EDK project directory and select the Demo.zip file.

• Press the Finish button.

With the project now newly rebuilt, download to a properly connected ML605 board via the SDK
Xilinx Tools menu, and launch the software onto the board from SDK:

1. Make sure board is powered on

2. Select Xilinx Tools > Program FPGA.

3. Press the Program button.

After the FPGA is configured:

http://www.xilinx.com

References

XAPP521 (v1.0) February 1, 2012 www.xilinx.com 11

1. Open a terminal with the proper COM port selected for the system’s USB port.

2. Highlight the empty_application_0 software project.

3. Press the green Play button in the SDK tool bar.

The software output should be onscreen.

References This document uses the following references:

1. UG761, AXI4 Reference Guide

2. XTP084, ML605 Hardware Setup Guide

3. ML605 Documentation
http://www.xilinx.com/support/#nav=sd-nav-link-140997&tab=tab-bk

4. UG683, EDK Concepts, Tools, and Techniques

5. AMBA 4 AXI4-Stream Protocol Specification
http://www.arm.com

Conclusion The xsvi2axi and axi2xsvi bridges effectively translate between XSVI and AXI4-Stream and
allow video designs using XSVI to use the AXI VDMA for memory access. This solution is used
to build video systems when the Xilinx video IP does not contain an AXI4-Stream interface.

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS
IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

02/01/2012 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/edk_ctt.pdf
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/support/documentation/boards_and_kits/xtp084.pdf

	Bridging Xilinx Streaming Video Interface with the AXI4-Stream Protocol
	Summary
	Design Overview
	XSVI to AXI4-Stream
	AXI4-Stream to XSVI

	Configuring the Bridges
	Bridge Device Utilization and Performance
	Reference Design
	Running the Reference Design
	Rebuilding the Design

	References
	Conclusion
	Revision History
	Notice of Disclaimer

